Unusual Reagent Control of Diastereoselectivity in the 1,2-Addition of Hard Carbon Nucleophiles to C₆-Heteroatom Substituted Cyclohexenones

Harriet A. Lindsay, Catherine L. Salisbury, Wally Cordes, † and Matthias C. McIntosh*

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701

mcintosh@uark.edu

Received August 30, 2001 (Revised Manuscript Received October 30, 2001)

ORGANIC LETTERS 2001 Vol. 3, No. 25

4007-4010

A surprising and synthetically useful counterion-dependent reversal of diastereoselectivity was found in 1,2-additions of hard carbon nucleophiles to C_6 -heterosubstituted cyclohexenones. In general, Grignard reagents added *syn* to the C_6 -substituent and Li reagents added *anti*, although some exceptions were found. Selectivities could be increased in some cases by appropriate choice of solvent and/or cosolvent.

The addition of carbon nucleophiles to aldehydes and ketones is one of the fundamental reactions in organic synthesis.¹ Such additions to cyclohexenones afford tertiary allylic cyclohexenols, which are common functional groups in natural products (Figure 1)² as well as useful intermediates in a variety of reactions.³

In 1,2-additions to cyclohexanones and cyclohexenones, the intrinsic stereoelectronic preference for axial addition of small nucleophiles and the propensity of larger nucleophiles to give higher proportions of equatorial addition products

10.1021/ol016673j CCC: \$20.00 © 2001 American Chemical Society Published on Web 11/16/2001

have been demonstrated both experimentally^{4–9} and computationally.⁵ However, it is clear from results in our laboratories that these simple guidelines do not generally predict the stereochemical outcome in additions to C₆heteroatom substituted cyclohexenones.^{10,11}

In the context of ongoing studies in our laboratories, we required stereoselective syntheses of a series of vinyl and

 $^{^\}dagger$ Author to whom correspondence regarding X-ray crystallographic analyses should be addressed.

^{(1) (}a) Ashby, E. C.; Laemmle, J. T. Chem. Rev. 1975, 75, 521-546.
(b) Eliel, E. L. in Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 2, pp 125-155. (c) Holm, T.; Crossland, I. in Grignard Reagents: New Developments; Richey, H. G., Ed.; Wiley: New York, 2000, pp 1-26. (d) Wakefield, B. J. Organomagnesium Methods in Organic Synthesis; Academic Press: San Diego, 1995. (e) Eicher, T. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Interscience: New York, 1991; Vol. 1, pp 621-693. (f) Huryn, D. M. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 1, pp 49-75 and references therein.

		$ \frac{R-M}{THF} \qquad \qquad$	CI
	1		2
entry	R	М	product (yield)
1	=-}-	MgBr	2a (56)
2	тмз§-	Li	2a (43) ^a
3	Mr.	MgBr	2b (47) ^b
4	1 st	Li	2b (51)

alkynyl cyclohexenols such as **2a**,**b** (Table 1). Additions of vinyl and ethynyl nucleophiles to 6-chlorocyclohexenone $(1)^{3b,12}$ gave the expected *anti* alcohols **2a**,**b** with greater than

(2) For examples of natural products containing tertiary allylic alcohols, see: (a) Sakai, R.; Higa, T. J. Am. Chem. Soc. 1986, 108, 6404-6405. (b) Macias, F. A.; Varela, R. M.; Simonet, A. M.; Cutler, H. G.; Cutler, S. J.; Dugan, F. M.; Hill, R. A. J. Org. Chem. 2000, 65, 9039-9046. (c) Fraga, B. M.; Terrero, D.; Gutierrez, C.; Gonzalez-Coloma, A. Phytochemistry 2001, 56, 315-320. (d) Collins, D. O.; Gallimore, W. A.; Reynolds, W. F.; Williams, L. A. D.; Reese, P. B. J. Nat. Prod. 2000, 63, 1515-1518. (e) Ahmed. A. A. J. Nat. Prod. 2000, 63, 989-991. (f) Cinel, B.; Roberge, M.; Behrisch, H.; van Ofwegen, L.; Castro, C. B.; Andersen, R. J. Org. Lett. 2000, 2, 257-260.

(3) See, for example: (a) Still, W. C. J. Am. Chem. Soc. **1977**, 99, 4186–4187. (b) Paquette, L. A.; Ross, R. J.; Shi, Y.-J. J. Org. Chem. **1990**, 55, 1589–1598. (c) Zhang, X.; McIntosh, M. C. Tetrahedron Lett. **1998**, 39, 7043–7046. (d) Trost, B. M.; Haffner, C. D.; Jebaratnam, D. J.; Krische, M. J.; Thomas, A. P. J. Am. Chem. Soc. **1999**, 121, 6183–6192.

(4) (a) Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am. Chem. Soc.
 1987, 109, 613–615. (b) Trost, B. M.; Florez, J.; Haller, K. J. J. Org. Chem.
 1988, 53, 2394–2396.

(5) (a) Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908-910.
(b) Wu, Y.-D.; Houk, K. N.; Trost, B. M. J. Am. Chem. Soc. 1987, 109, 5560-5561. (c) Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M. J. Org. Chem. 1991, 56, 3656-3664. (d) Ando, K.; Houk, K. N.; Busch, J.; Menasse, A.; Sequin, U. J. Org. Chem. 1998, 63, 1761-1766.

(6) (a) Stork, G.; Stryker, J. M. *Tetrahedron Lett.* **1983**, *24*, 4887–4890.
(b) Stork, G.; West, F.; Lee, H. Y.; Isaacs, R. C. A.; Manabe, S. J. Am. *Chem. Soc.* **1996**, *118*, 10660–10661.

(7) Buckwalter, B. L.; Burfitt, I. R.; Felkin, H.; Joly-Goudket, M.; Naemura, K.; Salomon, M. F.; Wenkert, E.; Wovkulich, P. M. *J. Am. Chem. Soc.* **1978**, *100*, 6445–6450.

(8) (a) Tanis, S. P.; McMills, M. C.; Herrinton, P. M. J. Org. Chem. **1985**, 50, 5887–5889. (b) Harnett, J. J.; Alcaraz, L.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Shin, D.-S.; Falck, J. R. Tetrahedron Lett. **1994**, 35, 2009–2012.

(9) Trost, B. M.; Keeley, D. E.; Arndt, H. C.; Rigby, J. H.; Bogdanowicz, M. J. J. Am. Chem. Soc. **1977**, *99*, 3080–3087.

(10) For examples of 1,2-additions to epoxyquinones and epoxyquinone monoketals, see: Wipf, P.; Coish, P. D. G. *J. Org. Chem.* **1999**, *64*, 5053–5061. Alcaraz, L.; Macdonald, G.; Ragot, J.; Lewis, N. J.; Taylor, R. J. K. *Tetrahedron* **1999**, *55*, 3707–3716 and references therein.

(11) A recent issue of *Chemical Reviews* was devoted to diastereoselection: (a) Mengel, A.; Reiser, O. *Chem. Rev.* 1999, 99, 1191–1224.
(b) Dannenberg, J. J. *Chem. Rev.* 1999, 99, 1225–1242. (c) Tomoda, S. *Chem. Rev.* 1999, 99, 1243–1264. (d) Cieplak, A. S. *Chem. Rev.* 1999, 99, 1265–1336. (e) Ohwada, T. *Chem. Rev.* 1999, 99, 1337–1376. (f) Gung, B. W. *Chem. Rev.* 1999, 99, 1377–1386. (g) Kaselj, M.; Chung, W.-S.; le Noble, W. J. *Chem. Rev.* 1999, 99, 1387–1414. (h) Adcock, W.; Trout, N. A. *Chem. Rev.* 1999, 99, 1415–1436. (i) Mehta, G.; Chandrasekhar, J. *Chem. Rev.* 1999, 99, 1437–1468. (j) Wipf, P.; Jung, J.-K. *Chem. Rev.* 1999, 99, 1469–1480.

(12) (a) Wender, P. A.; Holt, D. A. J. Am. Chem. Soc. 1985, 107, 7771–7772.
(b) Brummond, K. M.; Gesenberg, K. D. Tetrahedron Lett. 1999, 40, 2231–2234.

25:1 diastereoselectivity with either alkynyl- or vinyl-Li or -MgBr. The reactions presumably proceeded via a Felkin– Anh transition state¹³ with addition occurring *anti* to the axial C_6 -chloro substituent (vide infra).¹⁴

By contrast, vinylmetal additions to *trans*-6-chlorocarvone $3a^{12}$ demonstrated an unusual counterion-dependent reversal of diastereoselectivity (Table 2, entries 1 and 2). VinylMgBr

Table 2. Vinyl Additions to <i>trans</i> -6-Halocarvone						
	X <u>THF</u> -78 °C	M to RT	OH 4	+	5 OH	
entry	compd	Х	Μ	4:5	yield ^a	
1	а	Cl	MgBr	4:1	65	
2	а	Cl	Li	1:5	70	
3	b	F	MgBr	2:1	36	
4	b	F	Li	1:3	56	
^a Isolated	vield of maio	r isomer.				

produced predominately equatorial alcohol **4a** via addition *syn* to the C₆-chloride. VinylLi addition produced axial alcohol **5a** as the major product via *anti* addition. The relative stereochemistry of alcohols **4a** and **5a** was determined by ¹³C NMR analysis of the two diastereomers.¹⁵ A few scattered examples of counterion-dependent reversal of selectivity have appeared in the literature,¹⁶ although to our knowledge no systematic investigation of this phenomenon has been conducted.

In an effort to probe steric versus electronic effects of the C₆-heteroatom on diastereoselection, vinylmetal additions to *trans*-6-fluorocarvone $3b^{17}$ were examined (Table 2, entries 3 and 4).¹⁸ In the case of vinylmetal additions to fluorocarvone **3b**, we again observed a reversal of diastereoselec-

^{(13) (}a) Cherest, M.; Felkin, H.; Prudent, N. *Tetrahedron Lett.* **1968**, 2199–2204. (b) Cherest, M.; Felkin, H. *Tetrahedron Lett.* **1968**, 2205–2208. (c) Anh, N. T. *Top. Curr. Chem.* **1980**, 88, 145–161.

⁽¹⁴⁾ Although we were unable to rigorously determine the relative stereochemistries of alcohols **2a** and **2b**, the assignments are based on ample precedent: (a) Hussey, A. S.; Herr, R. R. J. Org. Chem. **1959**, 24, 843–845. (b) Gilchrist, T. L.; Stanford, J. E. J. Chem. Soc., Perkin Trans. 1 **1987**, 225–230. See also refs 3b and 22.

⁽¹⁵⁾ The ¹³C NMR shifts for the tertiary carbinol carbon and the terminal carbon of the vinyl substituent of equatorial alcohols **4a**,**b** were downfield relative to those of axial alcohols **5a**,**b**, whereas the shift of the internal carbon of the vinyl substituent of **4a**,**b** was upfield relative to that of **5a**,**b**. See Supporting Information for shift assignments and refs 4a and 7 for relevant examples.

^{(16) (}a) Miyashita, K.; Tanaka, A.; Shintaku, H.; Iwata, C. *Tetrahedron* **1998**, *54*, 1395–1406. (b) Ireland, R. E.; Courtney, L.; Fitzsimmons, B. J. J. Org. Chem. **1983**, *48*, 5189–5198. (c) See also Tagamose, T. M.; Bols, M. Chem. Eur. J. **1997**, *3*, 456–462. Nicotra, F.; Panza, L.; Ronchetti, F.; Russo, G. Gazz. Chim. Ital. **1989**, *119*, 577–579. (d) There was apparently no reversal of diastereoselectivity in 1,2-additions of vinylMgBr and vinylLi to 2-chlorocyclohexanone: Holt, D. A. *Tetrahedron Lett.* **1981**, *22*, 2243–2246.

⁽¹⁷⁾ *trans*-6-Fluorocarvone **3b** was prepared by fluorination of the Li enolate of (S)-(+)-carvone using the procedure of Davis: Davis, F. A.; Han, W. *Tetrahedron Lett.* **1992**, *33*, 1153–1156.

tivity,¹⁵ although the magnitude decreased slightly in both additions.

The diastereoselectivity of additions of several other hard carbon nucleophiles to *trans*-6-chlorocarvone **3a** was investigated (Table 3). Counterion-dependent reversal of selectiv-

Table 3. Diastereoselectivity in Additions to*trans*-6-Chlorocarvone

2	IDSCC	LI	ether	a	1.0	11
3	ⁿ Bu	MgBr	ether	b	25:1	59
4	ⁿ Bu	Li	THF	b	1:619	58^{e}
5	Ph	MgBr	ether	С	12:1	52
6	Ph	Li	ether	С	1:7 ²⁰	51

^{*a*} All additions except entry 2 were performed on substrates derived from the (*R*)-enantiomer of carvone. ^{*b*} Ratio determined by ¹H NMR integration of C₆-protons. ^{*c*} Isolated yield of major isomer. ^{*d*} Yield after desilylation. ^{*e*} Inseparable mixture of diastereomers.

ity was evident for all sets of nucleophiles, with Grignard reagents giving good to excellent *syn* selectivity (entries 1, 3, and 5) and alkynyl, alkyl, and aryllithium reagents all exhibiting good *anti* selectivity (entries 2, 4, and 6).¹⁵

However, when *cis*-6-chlorocarvone $\mathbf{8}$,²¹ was treated with either vinylMgBr or vinylLi, *anti* diastereomer $\mathbf{9}$ was produced as the sole detectable product by ¹H NMR analysis (Scheme 1).²²

To determine whether these findings were generalizable to other C_6 -substituted cyclohexenones, we examined addi-

tions to methoxyethoxymethyl (MEM) protected 6-hydroxycyclohexenone 10^{23} A reversal of diastereoselectivity was again observed as a function of the counterion (entries 1 and 3, Table 4).²⁴ Some notable solvent effects were observed

	OMEM Solvent -78 °C to RT		R ₁ OH ,,,,,OMEM		R, OH	
10			11		12	
entry	R	М	solvent/ co- solvent	cmpd	11 :12 ²⁴	yieldª
1	<u> </u>	MgBr	THF	а	2:1	63
2	<u> </u>	MgBr	THF/ DMPU (10 eq)	a	3:1	48
3	тмѕ{-	Li	THF	b	1:2	70
4	тмs <u>——</u> }-	Li	ether	b	1:7	69
5	тмs— <u>—</u> }-	Li	ether/ TEA (2:1)	b	1:13	67
6	1 sr.	MgBr	THF	с	2:1	31
7	<i>∑</i> r'	MgBr	THF/ DMPU (10 eq)	c	4:1	48
8	1 sr	Li	THF	с	1:2	69
a I1						

^a Isolated yield of major isomer.

in the additions. When DMPU was used in the Grignard additions (entries 2 and 7), selectivity increased from 2:1 to 3:1 for ethynylMgBr and from 2:1 to 4:1 for vinylMgBr. In the Li acetylide additions, changing the solvent from THF to ether improved selectivity from 1:3 to 1:7 (entries 3 and 4). Adding NEt₃ as a cosolvent further improved the selectivity to 1:13 (entry 5).²⁵ No such solvent-related improvements were found for the addition of vinyllithium,

(25) Carreira, E. M.; Du Bois, J. Tetrahedon Lett. 1995, 36, 1209-1212.

⁽¹⁸⁾ It has been reported that the proportion of equatorial reduction of *cis*-2-fluoro-4-*tert*-butyl-cyclohexanone increased slightly relative to the 2-chloro analog: Rosenberg, R. E.; Abel, R. L.; Drake, M. D.; Fox, D. J.; Ignatz, A. K.; Kwiat, D. M.; Schaal, K. M.; Virkler, P. R. *J. Org. Chem.* **2001**, *66*, 1694–1700.

^{(19) &}lt;sup>*n*</sup>BuLi addition to **3a** was performed at room temperature, and the reaction mixture was quenched with HOAc after 5 min. In the absence of an HOAc quench, selective decomposition of the minor product **6b** occurred upon prolonged (ca. 90 min) stirring of the reaction mixture at room temperature. Presumably the minor isomer **6b**, in which the alkoxide is *trans* to the chloride, decomposed via formation of the corresponding epoxide. In this case, an apparent selectivity of >1:20 was observed. See Supporting Information for details.

⁽²⁰⁾ X-ray crystallographic analysis of alcohol **7c** confirmed stereochemical assignments. See Supporting Information for details.

⁽²¹⁾ Kinetic epimerization of *trans*-6-chlorocarvone **3a** was achieved by adding **3a** to a solution of LDA at -78 °C followed by addition of a THF solution of camphor sulfonic acid. A 3:1 ratio of **8:3a** was obtained with *cis*-6-chlorocarvone **8** isolated in 64% yield.

⁽²²⁾ X-ray crystallographic analysis of an (S)-O-benzyl lactate ester derived from 9 confirmed stereochemical assignments. See Supporting Information for details.

⁽²³⁾ MEM-protected 6-hydroxycyclohexenone **11** was available from Rubottom oxidation and protection of 2-cyclohexen-1-one. (a) Oxidation: Rubottom, G. M.; Gruber, J. M. *J. Org. Chem.* **1978**, *43*, 1599–1602. (b) Protection: Corey, E. J.; Gras, J.-L.; Ulrich, P. *Tetrahedron Lett.* **1976**, 809–812.

⁽²⁴⁾ Relative stereochemistries for alcohols **11** and **12** were assigned by correlation to the free diol derived from propargyl alcohol **11a**. The structure of the diol was unambiguously determined by X-ray crystallography (see Supporting Information for full details).

with the highest selectivity being only 1:2 in THF (entry 8).²⁶

Several models for carbonyl addition have been proposed to rationalize diastereoselectivity in the addition of nucleophiles to cyclohexanones and cyclohexenones. These include Cram chelation,^{1a,27,28} Felkin—Anh,¹³ electrostatic repulsion,¹⁸ and delivery^{28,29} models. In the examples reported herein, four reaction pathways are in principle possible: axial or equatorial addition to either half-chair conformation of the cyclohexenone substrate (**i** or **ii**, Figure 2). In the case of

Figure 2. Four possible reaction pathways for additions to C₆-substituted cyclohexenones.

6-chlorocyclohexenone and *cis*-6-chlorocarvone, (cf. Table 1 and Scheme 1), excellent diastereoselectivity was observed and the same product was formed regardless of the nucleophile counterion. These results imply the operation of a single Felkin–Anh pathway, in which axial attack of the nucleophile occurs via the half-chair conformation **i**.

However, the observation of counterion-dependent reversal of diastereoselectivity is indicative of the operation of at least two reaction pathways.³⁰ Similarly, the modest diastereoselectivities observed in additions to 6-OMEM cyclohexenone imply that Cram chelation and/or Felkin–Anh pathways are not the sole modes of addition. Given the relatively modest energy differences necessary to reverse the

diastereoselection (e.g., from 1:5 to 5:1), extricating the individual contributions of solvent, metal, R-group, and C₆-heteroatom substituent may prove challenging.³¹ Further efforts toward optimizing the diastereoselectivity, probing the generality of the reversal and examining a wider variety of counterions are underway.

In summary, we have found that diastereoselectivity in the addition of hard carbon nucleophiles to C_6 -substituted cyclohexenones may in some cases be controlled by the counterion of the nucleophile, with Grignard reagents generally adding *syn* and lithium reagents adding *anti* to the C_6 substituent. Further, this selectivity may be optimized by use of an appropriate solvent and/or cosolvent in the addition reaction.

Acknowledgment. Support for this work was provided by the National Institutes of Health (GM-59406). M.C.M. is a Cottrell Scholar of Research Corporation. We thank Frank R. Fronczek, Louisiana State University, for assistance with X-ray crystallographic analysis. Thanks to Andrew Poss, Honeywell International, Inc., for a generous gift of *N*fluorobenzenesulfonimide.

Supporting Information Available: Representative experimental procedures, characterization data for compounds 2-9, 11a,c, and 12b,c; lactate ester of 9, ORTEPs of 7c, the (*S*)-*O*-benzyl lactate ester of 9, and the free diol derived from 11a; structure proof of alcohols 11a and 11c. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016673J

⁽²⁶⁾ Ancillary studies using various protecting groups for the C₆ alcohol yielded similar results.
(27) Still, W. C.; McDonald, J. H. *Tetrahedron Lett.* **1980**, *21*, 1031–

⁽²⁷⁾ Sun, W. C.; McDonaid, J. H. Tetranearon Lett. 1980, 21, 1031–
1034.
(28) Paquette, L. A.; Lobben, P. C. J. Am. Chem. Soc. 1996, 118, 1917–

 ⁽²⁹⁾ Allen, J. G.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 351–

⁽²⁵⁾ Anen, J. G., Danishersky, S. J. J. Am. Chem. Soc. **2001**, 125, 551– 352.

⁽³⁰⁾ Computational studies have examined the role of polar substituents in diastereoselective carbonyl addition reactions: (a) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. **1990**, 456–458. (b) Wu, Y.-D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. **1991**, 113, 5018–5027. (c) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. **1993**, 115, 9614–9619. Other theoretical studies have investigated selectivity in additions involving Grignard, organolithium, organoaluminum and/or organopotassium reagents: Yadav, V. K.; Sriramurthy, V. Tetrahedron **2001**, 57, 3987–3995. See also refs 5c–d.

⁽³¹⁾ A further complicating factor is the aggregation state of the nucleophile. A number of studies indicate that the molecular aggregation of organolithium and Grignard reagents is dependent upon solvent and the R group and that aggregation affects the reactivity of the nucleophile as well as the mechanism and the stereoselectivity of the addition. (a) Thompson, A.; Corley, E. G.; Huntington, M. F.; Grabowski, E. J. J.; Remenar, J. F.; Collum, D. B. *J. Am. Chem. Soc.* **1998**, *120*, 2028–2038. (b) McGarrity, J. F.; Ogle, C. A. *J. Am. Chem. Soc.* **1984**, *107*, 1805–1815. (c) Haeffner, F.; Sun, C.; Williard, P. G. *J. Am. Chem. Soc.* **2000**, *122*, 12342–12348. See also refs 1a, c, d.